

Exercice 1 6 points

Dans cet exercice, tous les résultats seront arrondis à 10^{-3} près en cas de besoin. Les deux parties de cet exercice sont indépendantes l'une de l'autre.

Partie A

Au tennis, le joueur qui est au service peut, en cas d'échec lors du premier service, servir une deuxième balle.

En match, Abel réussit son premier service dans 70 % des cas. Lorsque le premier service est réussi, il gagne le point dans 80 % des cas.

En revanche, après un échec à son premier service, Abel gagne le point dans 45 % des cas.

Abel est au service.

On considère les évènements suivants :

- *S* : « Abel réussit son premier service »
- G: « Abel gagne le point ».
- 1. Décrire l'évènement S puis traduire la situation par un arbre pondéré.
- **2.** Calculer $P(S \cap G)$.
- **3.** Justifier que la probabilité de l'évènement *G* est égale à 0,695.
- 4. Abel a gagné le point. Quelle est la probabilité qu'il ait réussi son premier service?
- **5.** Les évènements *S* et *G* sont-ils indépendants? Justifier.

Partie B

À la sortie d'une usine de fabrication de balles de tennis, une balle est jugée conforme dans 85 % des cas.

- **1.** On teste successivement 20 balles. On considère que le nombre de balles est suffisamment grand pour assimiler ces tests à un tirage avec remise. On note *X* la variable aléatoire qui compte le nombre de balles conformes parmi les 20 testées.
 - **a.** Quelle est la loi suivie par *X* et quels sont ses paramètres? Justifier.
 - **b.** Calculer P(X < 18).
 - **c.** Quelle est la probabilité qu'au moins deux balles ne soient pas conformes parmi les 20 balles testées?
 - **d.** Déterminer l'espérance de X.
- **2.** On teste maintenant n balles successivement. On considère les n tests comme un échantillon de n variables aléatoires X indépendantes suivant la loi de Bernoulli de paramètre 0,85.

On considère la variable aléatoire

$$M_n = \sum_{i=1}^n \frac{X_i}{n} = \frac{X_1}{n} + \frac{X_2}{n} + \frac{X_3}{n} + \dots + \frac{X_n}{n}$$

- **a.** Déterminer l'espérance et la variance de M_n .
- b. Après avoir rappelé l'inégalité de Bienaymé-Tchebychev, montrer que, pour tout entier naturel n, $P(0,75 < M_n < 0.95) \ge 1 - \frac{12.75}{n}$.
- **c.** En déduire un entier *n* tel que la moyenne du nombre de balles conformes pour un échantillon de taille *n* appartienne à l'intervalle]0,75; 0,95 [avec une probabilité supérieure à 0,9.

Exercice 2 4points

Cet exercice est un questionnaire à choix multiple. Pour chaque question, une seule des trois propositions est exacte.

Indiquer sur la copie le numéro de la question et la lettre de la proposition choisie. Aucune justification n'est demandée.

Pour chaque question, une réponse exacte rapporte un point.

Une réponse fausse, une réponse multiple ou l'absence de réponse ne rapporte ni n'enlève de point.

Dans toutes les questions suivantes, l'espace est rapporté à un repère orthonormé.

1. On considère la droite Δ_1 de représentation paramétrique $\begin{cases} x = 1-3t \\ y = 4+2t \\ z = t \end{cases}$ ainsi que la droite Δ_2 de représentation paramétrique $\begin{cases} x = -4+s \\ y = 2+2s \\ z = -1+s \end{cases}$, où $s \in \mathbb{R}$.

- **a.** Les droites Δ_1 et Δ_2 sont parallèles.
- **b.** Les droites Δ_1 et Δ_2 sont orthogonales.
- **c.** Les droites Δ_1 et Δ_2 sont sécantes.
- 2. On considère la droite d de représentation paramétrique $\begin{cases} x = 1 + t \\ y = 3 t \text{, où } t \in R, \\ z = 1 + 2t \end{cases}$

et le plan P d'équation cartésienne : 4x + 2y - z + 3 = 0.

- **a.** La droite *d* est incluse dans le plan *P*.
- **b.** La droite d est parallèle strictement au plan P.
- **c.** La droite *d* est sécante au plan *P*.
- **3.** On considère les points A(3; 2; 1), B(7; 3; 1), C(-1; 4; 5) et D(-3; 3; 5).
 - a. Les points A, B, C et D ne sont pas coplanaires.
 - **b.** Les points A, B et C sont alignés.
 - c. \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- **4.** On considère les plans Q et Q' d'équation cartésienne respective 3x 2y + z + 1 = 0 et 4x + y - z + 3 = 0.
 - **a.** Le point R(1; 1; -2) appartient aux deux plans.
 - **b.** Les deux plans sont orthogonaux.

c. Les deux plans sont sécants avec pour intersection la droite de représentation

paramétrique
$$\begin{cases} x = t \\ y = 7t+4 \text{ , où } t \in \mathbb{R}. \\ z = 11t+7 \end{cases}$$

Exercice 3 4 points

On considère les suites (v_n) et (w_n) définies pour tout entier naturel n par :

$$\begin{cases} v_0 &= \ln(4) \\ v_{n+1} &= \ln(-1+2e^{v_n}) \end{cases}$$
 et $w_n = (-1+e^{v_n})$

On admet que la suite (v_n) est bien définie et strictement positive.

- **1.** Donner les valeurs exactes de v_1 et w_0 .
- **2. a.** Une partie d'une feuille de calcul où figurent les indices et les termes des suites (v_n) et (w_n) est reproduite ci-contre.

 Parmi les trois formules ci-dessous, choisir la formule qui, saisie dans la cellule B3 puis recopiée vers le bas, permettra d'obtenir les valeurs de la suite (v_n) dans la colonne B.

Formule 1	LN(-1+2*EXP(B2))
Formule 2	= LN(-1 + 2 * EXP(B2))
Formule 3	= LN(-1 + 2 * EXP(A2))

- **b.** Conjecturer le sens de variation de la suite (v_n) .
- **c.** À l'aide d'un raisonnement par récurrence, valider votre conjecture concernant le sens de variation de la suite (v_n) .

	A	В	С
1	n	ν_n	w_n
2	0	1,38629436	3
3	1	1,94591015	6
4	2	2,56494936	12
5	3	3,21887582	24
6	4	3,8918203	48
7	5	4,57471098	96
8	6	5,26269019	192
9	7	5,95324333	384
10	8	6,6450909 7	768
11	9	7,33758774	1536
12	10	8,03040956	3072
13	11	8,72339402	6144
14	12	9,41645983	12288
15	13	10,1095663	24576
16	14	10,8026932	49152
17	15	11,4958302	98304
18	16	12,1889723	196608
19	17	12,8821169	393216

- **3.** a. Démontrer que la suite (w_n) est géométrique.
 - **b.** En déduire que pour tout entier naturel n, $v_n = \ln(1 + 3 \times 2^n)$.
 - **c.** Déterminer la limite de la suite (v_n) .
- **4.** Justifier que l'algorithme suivant écrit en langage Python renvoie un résultat quel que soit le choix de la valeur du nombre S.

```
from math import*
def seuil(S):
    V=ln(4)
    n=0
    while V < S:
        n=n+1
        V=ln(2*exp(V)-1)
    return(n)</pre>
```

Exercice 4 6 points

Partie A: dénombrement

On considère l'ensemble des nombres entiers relatifs **non nuls** compris entre -30 et 30; cet ensemble peut s'écrire ainsi : $\{-30 \; ; \; -29 \; ; \; -28 \; ; \; ... -1 \; ; \; 1 \; ; \; ... \; ; \; 28 \; ; \; 29 \; ; \; 30\}$. Il comporte 60 éléments.

On choisit dans cet ensemble successivement et sans remise un entier relatif a puis un entier relatif c.

1. Combien de couples (a; c) différents peut-on ainsi obtenir?

On considère l'évènement M: « l'équation $ax^2 + 2x + c = 0$ possède deux solutions réelles distinctes », où a et c sont les entiers relatifs précédemment choisis.

- **2.** Montrer que l'évènement M a lieu si et seulement si ac < 1.
- 3. Expliquer pourquoi l'évènement contraire \overline{M} comporte 1 740 issues.
- **4.** Quelle est la probabilité de l'évènement M? On arrondira le résultat à 10^{-2} .

Partie B: équation différentielle

On considère l'équation différentielle

(E):
$$y' + 10y = (30x^2 + 22x - 8)e^{-5x+1}$$
 avec $x \in \mathbb{R}$

où y est une fonction définie et dérivable sur \mathbb{R} .

- **1.** Résoudre sur \mathbb{R} l'équation différentielle : y' + 10y = 0.
- **2.** Soit la fonction f définie sur \mathbb{R} par

$$f(x) = (6x^2 + 2x - 2)e^{-5x+1}.$$

On admet que f est dérivable sur \mathbb{R} et on note f' la fonction dérivée de la fonction f. Justifier que f est une solution particulière de (E).

3. Donner l'expression de toutes les solutions de (*E*).

Partie C: étude de fonction

On propose d'étudier dans cette partie la fonction f rencontrée à la partie B question 2. On rappelle que, pour tout réel x, $f(x) = (6x^2 + 2x - 2)e^{-5x+1}$.

On note f' la fonction dérivée de la fonction f. On appelle \mathcal{C}_f la courbe représentative de f dans un repère du plan.

- 1. On admet que $\lim_{x \to +\infty} f(x) = 0$. Déterminer la limite de la fonction f en $-\infty$
- **2.** En utilisant la partie A, montrer que \mathscr{C}_f coupe l'axe des abscisses en deux points (les coordonnées de ces points ne sont pas attendues).
- **3.** En utilisant les parties A et B, montrer que \mathscr{C}_f possède deux tangentes horizontales.
- **4.** Dresser le tableau de variation complet de la fonction f.
- **5.** Déterminer en justifiant le nombre de solution(s) de l'équation f(x) = 1.

- **6.** Pour tout réel m strictement supérieur à 0,2, on définit I_m par $I_m = \int_{0.2}^m f(x) \, \mathrm{d}x$.
 - **a.** Vérifier que la fonction F définie sur $\mathbb R$ par

$$F(x) = \left(-\frac{6}{5}x^2 - \frac{22}{25}x + \frac{28}{125}\right)e^{-5x+1}$$

est une primitive de la fonction f sur \mathbb{R} .

b. Existe-t-il une valeur de m pour laquelle $I_m = 0$? Interpréter graphiquement ce résultat.