
Bac Spé Maths 2025 Voici la correction complète du jour 1 pour le sujet Centres Etrangers Jeudi 12 Juin 2025

Correction proposée par Bruno Swiners www.coursmathsaix.fr


```
Partie C 1) on a E(X1) = mxp = 20x 0,165 = [3,3 eneury]
           et on a V(x1) = mxpx(1-p) = 20×0,165×0,635 = 2,7555
Et om aura la même espérance et la même variance pour X2 et X3
2) par linearité de l'experance, on a:
         E(S) = E(x_1 + x_2 + x_3)
               = E(x1) + E(x2) + E(x3) = 3 x 3,3 = [9,9 eneury]
Et puisque les variables sont indépendentes, on a :
         V(S) = V(X1+X2+X3)
               = V(x_1) + V(x_2) + V(x_3) = 3 \times 2,755 = [3,2665]
3) on va utiliser i i le fait que 10 (la valeur de E(S)) se trouve "au milieu" entre les valeurs 6 et 14.
   La on vent calculer ici P(15-10/4)
   et ou sait, avec l'inégalité de Bienayme-Tchesicher:
                 P(1S-E(S) ) & 4) & V(S)
               P(15-1017,4) & 3,2665
 Soit
            - P(15-101=4) 2 - 3,2665 (inversion de)
 Soit
           1-3(15-20124)>1-32665
soit
   et puisque P(15-201<4) = 1-p(15-201>4)
on obtient P(15-10/24)>(1-5,2665)>0,48
et donc, on a hiem P(15-20164)>0,48
```

Exercise 2 les réponses de le QCM sont 1 - a 2 - d $3 \rightarrow b$ 4 -> 6 et on va donner quelques explications même si ce n'est pas demandé dans ce type de Qcir. Question I Les vecteurs directeurs des droites sont: AB (3-(-3)) -> AB (4) et Fd (3) en utilise la représentation parametrique. on calcule 3: 4=0,75 et 0:4=0 + 0,75 Donc les vecteurs As et va me sont pas colinéaires et les droites (AB) et (d) ne sont pas para flèles. De plus, on calcule AB. Ja=4x3+4x0+(-2)x(-5) = 22 +0 et les disites (AB) et (d) ne peuvent per être perpendiculaires. de plus, une représentation paramétrique de (AB) est (x=1-3)+4t'
et ou d'intéresse à l'intersection et on s'intéresse à l'intersection 3=4+(-2)E' entre les disites (AB) et (d). - on resout {-3+4t'=-6+3t - t=1 1+4t'= 1 - t'=0 4-2t'= 9-5t - t=1 on obtient bien la même valeur de t. Done il existe bien un point d'intersection - réponse a Question 2

on a \overline{AB} (4) et un vecteur normal à. P sera \overline{mp} (4)

om a \overline{AB} (4)

om utilise

l'équation vartésienne de (P) Done on a AB = mp. La droite (AB) est donc orthogonale au plan (P). cela exclut automatiquement les réponses D, D et D et la réponse D est bien la seule possible.

Question 3 on 5 intéresse aux verteurs normans des plans (P) et (P'). ces 2 vecteurs sont 4 on a mp (4) et mp. (2) = obtenus avec les Equations lantisiennes! on a 2:4=0,5 et 1:4=0,25 +0,5 Dome les vecteurs no et noi ne sont pas colinéaires Done les plans ne sont pas parallèles et ne sont pes confondus. Par contre, on a mp. mp: = 4x2+4x1+(-2)x6=8+4-12===] Done on a mp I mp, et les plans sont perpendiculaires - réprise b. Question 4 on a AB (4) et on a done AB = \ 42 + 42 + (-2)2 = \(\sigma 36 = \begin{array}{c} 4 \\ 4 \\ \end{array} on a AC (3) et on a done AC = $\sqrt{3^2 + 0^2 + (-5)^2} = \sqrt{34}$ on alcale alors $\overrightarrow{A3} \cdot \overrightarrow{AC} = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -5 \end{pmatrix} = \frac{4 \times 3 + 4 \times 0 + (-2) \times (-5)}{22}$ et on sait que AB. AC = AB × AC × cosc BAC)
(=6) (=034) on en déduit $6 \times \sqrt{34} \times \cos(8AC) = 22$ soit $\cos(8AC) = \frac{22}{6\sqrt{34}}$ et BAC = $\cos^{-1}\left(\frac{22}{6\sqrt{34}}\right) \approx \left(51^{2}\right)$ - réponse D

Exercise 3
Partie A 1) on a lim $(x+1)=0^+$ donc lim $\ln(x+1)=-\infty$
et, avec lim $\frac{x^2}{25} = \frac{1}{25}$, on obtient (par soushaction) lim $f(x) = [-\infty]$
2) on a $f(x) = 4 \ln(x+3) - \frac{x^2}{25}$
$\int f(x) = 4x \frac{1}{x+1} - \frac{2x}{25} = \frac{4 \times 25 - 2x(x+1)}{25(x+1)} \cdot \frac{100 - 2x^2 - 2x}{25(x+1)}$
3) sur]-1;+20[, on a (x+1)>0
Donne le signe de $f'(z)$ me dipend que du signe du trin ême $\left(-2z^2-2z+5\infty\right)$. on value $\Delta = (-2)^2 - 4\times(-2)\times 500 = 804 > 0$ il ya 2 racines.
$x_1 = \frac{2 - \sqrt{804}}{-4} \approx 6.6$ et $x_2 = \frac{2 + \sqrt{804}}{-4} \approx -7.6$ $(5) x_2 \notin]-1; +\infty[$
on obtient donc le l'ableau suvant
signe de f (a) + 0 - signe d'un trinôme avec une valeur de f de f
on constate que l'intervalle [2; 6,5] estinclus dans]-1;21]
et la fonction f est bien croissante sur [2; 6,5].
4) on a $h(2) = 1(2) - 2 \approx 2,23$
er h(6,5) = 1(6,5)-6,5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Dome l'Equation h(n) =0 me peut pas avoir de solution
sur [2; m] (la fonction est strictement positive sur [2; m]).
Par contre, la fonction li est continue et décroissante sur [m; 6,5]
et on a $h(m) = 11 \approx 2,265 > 0$ $v + h(6,5) \approx -0,7 < 0$ v = 10,5 < 0
De la coma hent sien à l'intervalle [hos) com
of dance le conollaire and 101, 1 equality
une station unique sur l'includence l'includ
5) a) la commande bornes (2) nous donnére un intervalle
d'amplitude so 2 centré sur la solution de l'équation
h(x) = 0 on obtient i (6.36,6.37)] b) ula signifie que la solution d'est comprise entre 6,36 et 6,37.
of was significant of the signif

Partie B
1) on a $U_0 = 2$ et $U_1 = f(U_0) = f(2) = 4 \ln(3) - \frac{2^2}{25} \approx 4.23$
initialisation on a bien 2 ≤ 00 ≤ 02 ≤ 6,5
et on a bien la propriété voulue au rang o.
to on vent montrer qu'elle reste vraie au rang met on vent montrer qu'elle reste vraie au rang (m+1).
L, on suppose 2 ≤ Un ≤ Un+1 ≤ 6,5
on obtient $f(2) \leq f(U_n) \leq f(U_{n+1}) \leq f(6,5)$ on applique la fonction f insissante sur $[2;6,5]$ qui va donc conserver l'ordre.
et linalement on oblient
$(2 \le) f(2) \le U_{n+2} \le U_{n+2} \le f(6,5) (\le 6,5)$ $\approx 4,23$
soit 2 ≤ Un+2 ≤ Un+2 ≤ 6,5
Le d'aprèr le principe de récurrence, on a bien la propriété voulue pour tout n.
2) la suite (Un) ent croissante (can Un & Unis) et elle est
majorie (van Un & 6,5). D'aprir le théorème de la convergence monotone, on sait que (Un) est convergente.
convergence monotone, on sait que (Un) extronvergente.
3) on a Unix=f(Un) avec f continue sur [2;6,5].
D'après le théorème du point fixe, la limite de l'un), notre l,
va vérifier l'équation l=f(l)
c'est à dire f(l)-l=0 on h(l)=0.
Lenombre L'étant l'unique solution de l'équation
h(x)=0 sur [2;6,5], on aura fortement [l=d]

Exercise 4 Partie A 1) La fonction hest constante donc on a h'(t) = 0. et on a bien hi(t) +0,48 h(t) = 0 +0,48x 1 = 120 -s h est sien une solution (particulière) de (Ez). 2) on résout y'+0,4by =0 - y'=-0,4by. on applique le cours et les solutions de cette équation sont de la forme: t-s Ke-948t, avec KER. 3) L'ensemble des solutions de (Ey) est donné par la SOMME d'une solution particulière de (Ez) avec la solution générale de l'équation homogène résolue dans le question 2.

On obtient: $+ \rightarrow \kappa e^{-0.48t} + \frac{1}{120} |$, avec $\kappa \in \mathbb{R}$ Partie B s) on a $p(t) = \frac{1}{y(t)}$ et on a donc $p'(t) = \frac{-y'(t)}{y^2(t)}$ Si p est solution de (Ez) abrion a p'(+) = = p(+) (120-p(+)) C'est à dire $\frac{-y'(t)}{y^2(t)} = \frac{2}{250} \left(\frac{1}{y(t)} \left(\frac{120}{y(t)} - \frac{1}{y(t)} \right) \right)$ on obtient $-y'(t) = \frac{1}{250} - \frac{y^{k}(t)}{y(t)} \left(120 - \frac{1}{y(t)}\right)$ on obtient $-y'(t) = \frac{1}{250} - \frac{y^{k}(t)}{y(t)} \left(120 - \frac{1}{y(t)}\right)$ et, en diveloppent, on a: -y'(+) = \frac{120}{250}y(6) - \frac{1}{250}y(6) \sqrt{y(k)} soit - y'(H) = 0,48 y(H) - 1/250 on $y'(t) + 0,48y(t) = \frac{1}{250}$ et on a bien y qui est solution de (Es). 2) on considère une solution y strictement positive de (E_1) .

on sait que $y(t) = K_1 e^{-0.14bt} + \frac{1}{220} (d'après la partie A)$ L, avec Kr reel positif per exemple

et on a $\rho(t) = \frac{1}{y(t)} = \frac{1}{\kappa_1 e^{-2/40t} + \frac{1}{120}} = \frac{120 \kappa_1 e^{-9/40t} + 1}{120 \kappa_2 e^{-9/40t} + 1}$ om note K cette nouvelle constante La on obtient bien l'expression souhaitée 3) La condition initiale nous donne p(0) = 30. on vent donc p(0) = 120 = 120 = 30 on obtient 120=30(1+K) soit 120=30+30K 10 K= 30=13 4) on a done p(t) = 120 1+3e-0,40t avec lim-0,48t=-0 et donc lime = 0,48t total

On a donc 0: /// on a done lim $\rho(t) = 120$ (limitedu type $\frac{120}{1+0}$ ou $\frac{120}{1}$) Done, à terme, la population de bactéries se stabilisera et se rapprochera de 120 000 bactéries. 5) on cherche donc à resoudre p(t) > 60 soit 120 1+3E0,48t >60 soit 100 > 1+3e 0,48t on obtient donc: e-0,48t < 2-1 = = 0,48t < \ \frac{2}{3} or la fonction lu est essissante et elle conseive l'ordre. on a donc: lne-0,48t $< ln(\frac{1}{3})$ avec $ln(\frac{1}{3}) = -ln 3$ c'estadire -0,48t <-lm3 et om obtient $t > \frac{-\ln 3}{-0.48}$ attention, ce résultat on a divisé par -0.48 qui est nightif est en heure et on le multiplie par 60 pour l'avoir en minutes. on t>2h17min.