BACCALAURÉAT GÉNÉRAL

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2022

MATHÉMATIQUES

JOUR 1

Durée de l'épreuve : $\mathbf{4}$ heures

L'usage de la calculatrice avec mode examen actif est autorisé.
L'usage de la calculatrice sans mémoire, «type collège » est autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet.
Ce sujet comporte 6 pages numérotées de 1/6 à 6/6.

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices

Chaque exercice est noté sur 7 points (le total sera ramené sur 20 points).
Les traces de recherche, même incomplètes ou infructueuses, seront prises en compte.

Exercice 1 (7 points)

Thème : Fonction logarithme

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l'absence de réponse à une question ne rapporte ni n'enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n'est demandée.

1- On considère la fonction f définie pour tout réel x par $f(x)=\ln \left(1+x^{2}\right)$.
Sur R, l'équation $f(x)=2022$
a- n'admet aucune solution.
b- admet exactement une solution.
c- admet exactement deux solutions.
d-admet une infinité de solutions.

2- Soit la fonction g définie pour tout réel x strictement positif par :

$$
g(x)=x \ln (x)-x^{2}
$$

On note C_{g} sa courbe représentative dans un repère du plan.
a- La fonction g est convexe sur] $0,+\infty$ [.
c- La courbe C_{g} admet exactement un point d'inflexion sur $] 0,+\infty[$.
b- La fonction g est concave sur $] 0,+\infty[$.
d- La courbe C_{g} admet exactement deux points d'inflexion sur $] 0,+\infty$ [.

3- On considère la fonction f définie sur] - 1; 1[par

$$
f(x)=\frac{x}{1-x^{2}}
$$

Une primitive de la fonction f est la fonction g définie sur l'intervalle] - $1 ; 1$ [par :
a- $g(x)=-\frac{1}{2} \ln \left(1-x^{2}\right)$
b- $g(x)=\frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}$
c- $g(x)=\frac{x^{2}}{2\left(x-\frac{x^{3}}{3}\right)}$
d- $g(x)=\frac{x^{2}}{2} \ln \left(1-x^{2}\right)$

4- La fonction $x \mapsto \ln \left(-x^{2}-x+6\right)$ est définie sur
a-]-3;2[
b-] - ∞; 6]
c- $] 0 ;+\infty[$
d- $] 2 ;+\infty[$

5- On considère la fonction f définie sur $] 0,5 ;+\infty$ [par

$$
f(x)=x^{2}-4 x+3 \ln (2 x-1)
$$

Une équation de la tangente à la courbe représentative de f au point d'abscisse 1 est :
a- $y=4 x-7$
b- $y=2 x-4$
c- $y=-3(x-1)+4$
d- $y=2 x-1$

6- L'ensemble \mathcal{S} des solutions dans \mathbf{R} de l'inéquation $\ln (x+3)<2 \ln (x+1)$ est :
a- $\mathcal{S}=]-\infty ;-2[U] 1 ;+\infty[$
b- $\mathcal{S}=] 1 ;+\infty[$
c- $\mathcal{S}=\emptyset$
d- $\mathcal{S}=]-1 ; 1[$

Exercice 2 (7 points)

Thème : Géométrie dans l'espace

Dans l'espace, rapporté à un repère orthonormé $(0 ; \vec{\imath}, \vec{\jmath}, \vec{k})$, on considère les points :

$$
A(2 ; 0 ; 3), B(0 ; 2 ; 1), C(-1 ;-1 ; 2) \text { et } D(3 ;-3 ;-1)
$$

1- Calcul d'un angle.
a- Calculer les coordonnées des vecteurs $\overrightarrow{A B}$ et $\overrightarrow{A C}$ et en déduire que les points A, B et C ne sont pas alignés.
b- Calculer les longueurs $A B$ et $A C$.
c- À l'aide du produit scalaire $\overrightarrow{A B} \cdot \overrightarrow{A C}$, déterminer la valeur du cosinus de l'angle $\widehat{B A C}$ puis donner une valeur approchée de la mesure de l'angle $\widehat{B A C}$ au dixième de degré.

2- Calcul d'une aire.
a- Déterminer une équation du plan P passant par le point C et perpendiculaire à la droite $(A B)$.
b- Donner une représentation paramétrique de la droite $(A B)$.
c- En déduire les coordonnées du projeté orthogonal E du point C sur la droite $(A B)$, c'est-à-dire du point d'intersection entre la droite $(A B)$ et le plan P.
d- Calculer l'aire du triangle $A B C$.
3- Calcul d'un volume.
a- Soit le point $F(1 ;-1 ; 3)$. Montrer que les points A, B, C et F sont coplanaires.
b- Vérifier que la droite (FD) est orthogonale au plan ($A B C$).
c- Sachant que le volume d'un tétraèdre est égal au tiers de l'aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $A B C D$.

Exercice 3 (7 points)

 Thèmes : Fonction exponentielle et suite
Partie A :

Soit h la fonction définie sur \mathbf{R} par

$$
h(x)=\mathrm{e}^{x}-x
$$

1- Déterminer les limites de h en $-\infty$ et $+\infty$.
2- Étudier les variations de h et dresser son tableau de variation.
3- En déduire que : si a et b sont deux réels tels que $0 \leqslant a \leqslant b$ alors $h(a)-h(b) \leqslant 0$.

Partie B :

Soit f la fonction définie sur \mathbf{R} par

$$
f(x)=\mathrm{e}^{x}
$$

On note C_{f} sa courbe représentative dans un repère $(0 ; \vec{\imath}, \vec{\jmath})$.
1- Déterminer une équation de la tangente T à C_{f} au point d'abscisse 0 .

Dans la suite de l'exercice on s'intéresse à l'écart entre T et C_{f} au voisinage de 0 . Cet écart est défini comme la différence des ordonnées des points de T et C_{f} de même abscisse.

On s'intéresse aux points d'abscisse $\frac{1}{n}$, avec n entier naturel non nul.
On considère alors la suite $\left(u_{n}\right)$ définie pour tout entier naturel non nul n par :

$$
u_{n}=\exp \left(\frac{1}{n}\right)-\frac{1}{n}-1
$$

2- Déterminer la limite de la suite $\left(u_{n}\right)$.
3- a- Démontrer que, pour tout entier naturel non nul n,

$$
u_{n+1}-u_{n}=h\left(\frac{1}{n+1}\right)-h\left(\frac{1}{n}\right)
$$

où h est la fonction définie à la partie A.
b- En déduire le sens de variation de la suite $\left(u_{n}\right)$.

4- Le tableau ci-dessous donne des valeurs approchées à 10^{-9} des premiers termes de la suite $\left(u_{n}\right)$.

n	u_{n}
1	0,718281828
2	0,148721271
3	0,062279092
4	0,034025417
5	0,021402758
6	0,014693746
7	0,010707852
8	0,008148453
9	0,006407958
10	0,005170918

Donner la plus petite valeur de l'entier naturel n pour laquelle l'écart entre T et C_{f} semble être inférieur à 10^{-2}.

Exercice 4 (7 points)

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d'une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.
On désigne par A l'évènement : « la paire de verres présente un défaut pour le traitement T1».

On désigne par B l'évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement \bar{A} et \bar{B} les évènements contraires de A et B.

Une étude a montré que :

- la probabilité qu'une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à 0,1 .
- la probabilité qu'une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à 0,2 .
- la probabilité qu'une paire de verres ne présente aucun des deux défauts est 0,75.

1- Recopier et compléter le tableau suivant avec les probabilités correspondantes.

	A	\bar{A}	Total
B			
\bar{B}			
Total			1

2- a- Déterminer, en justifiant la réponse, la probabilité qu'une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
b- Donner la probabilité qu'une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
c- Les évènements A et B sont-ils indépendants ? Justifier la réponse.
3- Calculer la probabilité qu'une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
4- Calculer la probabilité qu'une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T 2 , sachant que cette paire de verres présente un défaut pour le traitement T1.

Partie B

On prélève, au hasard, un échantillon de 50 paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note X la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

1- Justifier que la variable aléatoire X suit une loi binomiale et préciser les paramètres de cette loi.
2- Donner l'expression permettant de calculer la probabilité d'avoir, dans un tel échantillon, exactement 10 paires de verres qui présentent ce défaut. Effectuer ce calcul et arrondir le résultat à 10^{-3}.
3- En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de 50 paires?

