Comment dénombrer des combinaisons de p éléments parmi n

On commence par définir "factorielle n"

Le nombre "factorielle n" se note n! et il est égal à $n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$

On a, par exemple, $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$ et on aura par convention 0! = 1.

On pourra remarquer que $(n+1)! = (n+1) \times [n \times (n-1) \times (n-2) \times \times 2 \times 1] = (n+1) \times n!$

Qu'est ce qu'une combinaison ?

Ce terme combinaison est celui que vous trouverez, par exemple, sur votre calculatrice TI-83 premium.

On parlera d'une combinaison de p éléments parmi n ou, plus simplement, on dira "p parmi n".

On sera alors dans un cas où il n'y a pas de répétitions possibles des éléments ET aussi où l'ordre des éléments choisis n'a aucune importance.

Exemple: avec une urne constituée de 10 boules numérotées de 0 jusqu'à 9.

Si on s'intéresse à un tirage simultané de 4 boules parmi ces 10 boules, on comprend bien que la notion d'ordre n'existe pas ici. En effet, si on tire la boule 6 avec ce tirage simultané, cela n'a aucun sens de dire qu'elle a été tirée en première ou en deuxième position.

La propriété

Le nombre de combinaisons de p éléments parmi n éléments se note $\binom{n}{p}$ avec $\binom{n}{p} = \frac{n!}{(n-p)! \times p!}$ **Exemple**: en reprenant l'urne constituée de 10 boules numérotées de 0 jusqu'à 9, et le *tirage simultané*

de 4 boules parmi ces 10 boules. Le nombre de combinaison est égal à $\binom{10}{4} = \frac{10!}{(10-4)! \times 4!} = 210$

N'hésitez pas à taper directement ce calcul sur votre calculatrice ou utiliser la touche "combinaison".

Applications

Situation 1 : au poker, chaque joueur reçoit une "main" de 5 cartes prises parmi 52 cartes. On cherche alors le nombre total de "mains" possibles.

C'est une combinaison de 5 cartes parmi 52.

C'est comme un tirage simultané de 5 cartes, pour lequel il n'y a ni répétition ni ordre. Le nombre de combinaisons est alors égal à $\binom{52}{5} = \frac{52!}{(52-5)! \times 5!} = 2598960$.

Situation 2 : un capitaine de tennis dispose de 6 joueurs et il doit choisir 2 joueurs pour former une équipe de double. On cherche alors le nombre total d'équipes de double possibles.

C'est une combinaison de 2 joueurs parmi 6.

C'est comme un tirage simultané de 2 joueurs, pour lequel il n'y a ni répétition ni ordre.

Le nombre de combinaisons est alors égal à $\binom{6}{2} = \frac{6!}{(6-2)! \times 2!} = 15$.

Situation 3 : au LOTO , le joueur coche des numéros sur une grille et attend le tirage . L'ancienne règle consistait à tirer 6 boules dans une urne de 49 boules numérotées de 1 à 49.

Le nombre de tirages était alors une combinaison de 6 boules parmi 49.

On avait $\binom{49}{6} = \frac{49!}{(49-6)! \times 6!} = 13983816$ tirages possibles.

Avec la nouvelle règle, on tire 5 boules parmi les 49 (soit $\binom{49}{5}$ = 1 906 884) puis on tire 1 boule dans

une urne avec 10 boules numérotées de 1 à 10 (cela multiplie donc par 10 le nombre de tirages). On obtient donc $1\,906\,884 \times 10 = 19\,068\,840$ tirages possibles.

Conclusion: la probabilité de gagner a donc diminué (mais les gains ont heureusement augmenté ...)