Fonction linéaire et proportionnalité

...Et c'est là que l'on va voir que d'anciennes notions (ici, la *proportionnalité*) sont parfaitement liées à des notions nouvelles (ici, les fonctions *linéaires*). C'est une chose tellement fréquente en mathématiques !

On passe d'une fonction linéaire à un tableau de proportionnalité

On va prendre l'exemple d'une fonction linéaire de coefficient 5.

Cette fonction *linéaire* peut donc s'écrire avec f(x) = 5x.

On rappelle que, pour remplir un tableau de valeurs, il suffit de remplacer x par les différentes valeurs de la première ligne de ce tableau afin de calculer leur image respective.

On obtient le tableau suivant :

x	1	2	3	4	5	6
f(x) = 5x	5	10	15	20	25	30
5,	(1)	[5×2]	5×3	5.4)	(5×5)	5×6)

Conclusion:

Les valeurs du tableau sont forcément *proportionnelles* puisque l'on passe de la première ligne à la deuxième ligne en multipliant toujours par le même nombre 5.

→ on a donc un tableau de proportionnalité de coefficient 5.

On passe d'un tableau de proportionnalité à une fonction linéaire

On va partir cette fois d'un tableau de valeurs

x	1	2	10	20
У	3	6	30	60

On vérifie sans souci que que l'on a bien un tableau de proportionnalité de coefficient 3. On divise les nombres de la 2e ligne par ceux de la 1ere ligne.

→ on a bien un tableau de proportionnalité de coefficient 3.

Ce tableau peut alors représenter le tableau de valeurs de la fonction *linéaire* définie par f(x) = 3x.

Propriétés

Toute situation de proportionnalité peut être représentée par une fonction linéaire.

Et, inversement, toute fonction linéaire correspondra à une situation de proportionnalité.