Une étude complète de trinôme

On va reprendre ici, avec un exemple (et à vous d’en faire d’autres !), les différentes connaissances à avoir, les différents calculs à maîtriser afin d’être parfaitement à l’aise avec l’étude d’un trinôme.

On va ici étudier le trinôme \(-2x^2 + 4x + 6\) → \[
\begin{cases}
 a = -2 \\
 b = 4 \\
 c = 6
\end{cases}
\]

Les coordonnées du sommet

\[
\begin{align*}
 \text{On calcule } & \quad \Delta = \frac{-b}{2a} = \frac{-4}{2\cdot(-2)} = \frac{-4}{-4} = 1 \\
 \text{On calcule } & \quad \beta = -2 \cdot 1^2 + 4 \cdot 1 + 6 = -2 \cdot 1 + 4 + 6 = 8
\end{align*}
\]

Donc le sommet aura pour coordonnées \((1; 8)\).

La forme canonique du trinôme

\[
a(x-1)^2 + \beta \quad \text{soit} \quad -2(x-1)^2 + 8
\]

Le tableau de variations du trinôme (le coefficient a est négatif, courbe en "\(\cap\)")

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(1)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variations du trinôme</td>
<td>(-2x^2 + 4x + 6)</td>
<td>(\bigcirc 8)</td>
<td></td>
</tr>
</tbody>
</table>

Les racines du trinôme (calcul du discriminant)

\[
\begin{align*}
 \text{On calcule } & \quad \Delta = b^2 - 4ac = 4^2 - 4 \cdot (-2) \cdot 6 = 64 > 0 \\
 \text{le discriminant est positif, il y a deux racines.} \\
 x_1 & = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{64}}{2 \cdot (-2)} = \frac{-4 - 8}{-4} = \frac{12}{-4} = -3 \\
 x_2 & = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + 8}{-4} = -1
\end{align*}
\]

Le tableau de signes (le coefficient a est négatif, courbe en "\(\cap\)")

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(-1)</th>
<th>(3)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signes du trinôme</td>
<td>(-2x^2 + 4x + 6)</td>
<td>(-)</td>
<td>(0)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

La forme factorisée du trinôme

\[
\begin{align*}
 a(x-x_1)(x-x_2) \quad \text{soit} \quad -2(x-3)(x-(-1)) = -2(x-3)(x+1)
\end{align*}
\]

Allure de la courbe représentative

Fiche (TriPre10) © Bruno Swiners