Comment calculer l'aire entre deux courbes

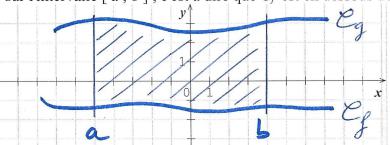
Au tout début du travail sur les intégrales, on a été amené à faire un lien entre cette notion d'intégrale et un aspect très concret, qui est l'aire sous une courbe (d'une fonction positive).

En fait, on peut généraliser tout cela en s'intéressant à l'aire entre deux courbes quelconques (définies à partir de deux fonctions qui peuvent être positives ou négatives).

Définition de l'aire entre deux courbes avec une intégrale

On considère deux fonctions f et g, avec leurs courbes représentatives C_f et C_g .

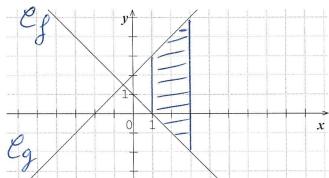
On suppose que $f \leq g$ sur l'intervalle [a; b], c'est à dire que C_f est en dessous de C_g sur cet intervalle.



L'aine hackune entre les deux courbes est égale à $\int_{a}^{b} (g(x) - f(x)) dx$

Un exemple (vérifiable) de calcul d'une aire entre deux courbes

On va travailler avec deux fonctions f et g définies par f(x) = -x + 1 et g(x) = x + 2. On va calculer l'aire entre les courbes C_f et C_g , délimitée par les droites verticales d'équations x = 1 et x = 3.



L'aire hackurée estégale
à
$$\mathcal{H} = \int (g(x) - f(x)) dx$$

On a domc: $A = \int (x+2-(-x+1)) dx$ Soit $A = \int_{1}^{3} (2x+1) dx = [x^{2}+x]_{1}^{3}$ $A = (3^{2}+3)-(1^{2}+1) = [10]$

→ Remarque : on peut vérifier, en comptant les carreaux, l'exactitude de ce résultat !!